1	(a	wa		[1] [1]			
		blu	,	baper [1]			
		or: sodium hydroxide solution dissolve fertiliser in water Ca ²⁺ gives (white) ppt or:					
		flame test Ca ²⁺ brick red / orange / orange-red NH ₄ ⁺ no colour					
	(b)	 (b) iron catalyst pressure 150–300 atmospheres temperature 370–470 °C N₂ + 3H₂ ≑ 2NH₃ note: units required for temperature and pressure 					
	(c)	(c) potassium / K					
	(d)	(needs to be soluble / in solution (to be absorbed by plants)	[1]			
		(ii)	base proton acceptor	[1] [1]			
	(e)	pla	nt growth depends on soil acidity or pH / plants have optimum pH (for growth)	[1]			
		ado	$d Ca(OH)_2 / CaO / CaCO_3 / lime / slaked lime / quicklime / limestone$	[1]			
2	(a	(i)	nitrogen 2+5	[1]			
		(ii)	needs three electrons to complete energy level	[1] [1]			
	(b)		expensive metal / iron cheaper / better catalyst	[1]			
		(ii)	high pressure favours side with smaller volume / fewer moles this is right hand side / product / ammonia side	[1] [1]			
		(iii)	recycled / sent over catalyst again accept used again	[1]			
		(iv)	advantage high yield disadvantage slow reaction rate etc	[1] [1]			
				[Total: 9]			

3	(a	(i)) air (liquid) petroleum or crude oil or alkanes or methane or water or steam or steam suitable aqueous solution e.g. brine or sea water NOTE: cannot crack methane		
		(ii)	iron	[1]	
		(iii)	(as a) fertiliser or to make fertilisers or to make nitric acid	[1]	
	(b)) (i)	concentrations/macroscopic properties do not change accept amounts stay the same NOT no change	[1]	
			rate of forward and back reactions equal	[1]	
		(ii)	it <u>decreases</u> with <u>increase</u> temperature or it <u>increases</u> with <u>decrease</u> temperature	[1]	
	(c)	(i)	shows an increase either a line or curve (any decrease = 0)	[1]	
		 (ii) increase pressure favours the side with lower volume or molecules or mole that is RHS or products side ignore any mention of rates 		[1] [1]	
				[Total: 10]	
/	∣ (a`) ((i) iron		
4	• (a)		(i) iron	[1]	
4	(a)		 (i) iron (ii) advantage higher yield explanation lower temperature favours the exothermic reaction (that is the forward reaction) 	[1]	
4	⊧ (a) (b	((ii) advantage higher yield explanation lower temperature favours the exothermic reaction	[1]	
4		()) ((ii) advantage higher yield explanation lower temperature favours the exothermic reaction (that is the forward reaction) (i) Sent over the catalyst again or used to make more ammonia 	[1] [1] [1]	
4		()) ((ii) advantage higher yield explanation lower temperature favours the exothermic reaction (that is the forward reaction) (i) Sent over the catalyst again or used to make more ammonia NOT just reused 	[1] [1] [1] [1]	
4	(b	()) (()) ((ii) advantage higher yield explanation lower temperature favours the exothermic reaction (that is the forward reaction) (i) Sent over the catalyst again or used to make more ammonia NOT just reused (ii) It has the highest boiling point (i) CO₂ + 2NH₃ = CO(NH₂)₂ + H₂O 	[1] [1] [1] [1] [1]	
4	(b	()) ()) () ((ii) advantage higher yield explanation lower temperature favours the exothermic reaction (that is the forward reaction) (i) Sent over the catalyst again or used to make more ammonia NOT just reused (ii) It has the highest boiling point (i) CO₂ + 2NH₃ = CO(NH₂)₂ + H₂O Not balanced [1] (ii) Any comment based on deficiency of PK/or ONLY provides Nitrogen as a nutrient 	[1] [1] [1] [1] [2]	

[TOTAL = 11]

(a)	from methane [1] and water [1]	
	OR electrolysis [1] suitable electrolyte [1]	
	OR alkane [1] cracking [1]	[2]
(b)(i)	iron	[1]
(ii)	lower temperature moves equilibrium to right because forward reaction is exothermic	[1] [1]
(c)(i)	H—H endothermic endothermic exothermic	[1] [1] [1]
(ii)	More heat given out than taken in [1] –2328 + 945 + 1308 = –75(kJ) [1]	
	OR More heat given out bond forming than taken in bond breaking [2] Must mention bond breaking and forming	[2]
		TOTAL = 10

6	(a)	dissolv NOT a	[1]	
		l liquid	[1]	
	(b)	2 elect	rons in bond between two nitrogen atoms rons on each nitrogen any coding of electrons with dots or crosses	[1] [1]
	(c)		decreases or reaction stops or rate becomes zero	[1]
		(ii)	concentration or number of effective collisions decreases used up or less chemical or less collisions etc [1] only	[1] [1]
		(iii)	greater initial slope same final point as long as new curve touches the original curve near the top allocate the mark	[1] [1]
		(iv)	greater surface area	[1]
				TOTAL = [10]

5